
J .  Fluid Mech. (1992), vol. 243, p p .  33-50 

Printed in Great Britain 

33 

The transient response of a contained rotating 
stratified fluid to impulsively started surface forcing 

By G. S. M. SPENCE'T, M. R. FOSTER' AND P. A. DAVIES' 
Department of Civil Engineering, The University, Dundee DD1 4HN, UK 

Department of Aeronautical and Astronautical Engineering, The Ohio State University, 
Columbus OH 43210-1275, USA 

(Received 13 May 1987 and in revised form 20 January 1992) 

The transient response of a contained stratified rapidly rotating fluid to an impulsive 
surface stress has been studied theoretically and experimentally. The analysis 
predicts, and the experiments confirm, that for low values of the Burger number S 
the initial fluid adjustment within the E-fW' timescale is characterized by a 
barotropic response in which the magnitude of the interior velocity is independent of 
depth. (Here E and d are the Ekman number and rotation rate respectively.) The 
period of the barotropic response decreases as S increases. For large S, the barotropic 
flow adjusts subsequently to a baroclinic flow within the E-k-' scale, and during 
this later stage the excess and deficit in velocity in the lower and upper parts 
respectively of the fluid are removed. The baroclinic flow forced by the surface stress 
in these cases is thereby established in a timescale which is typically less than the 
spin-up time for a homogeneous fluid. The agreement between theory and experiment 
is shown to be qualitatively good, and the quantitative discrepancies observed 
between the predicted and measured interior velocities are discussed. 

1. Introduction 
The transient response of a rotating fluid to an initiation or change in external 

forcing constitutes a problem of central interest in geo- and astrophysics. The terms 
'spin-up ' or 'spin-down ' have often been employed to describe the response, though 
these terms have generally been reserved for cases in which the angular velocity of 
the whole fluid body is either increased or decreased impulsively (see Benton & Clark, 
1974, for example, for a comprehensive review of the subject). In such cases, spin-up 
(down) is held to be the process of adjustment that is initiated when the rotation rate 
of the fluid is increased (decreased), and completed when the fluid regains solid-body 
rotation a t  the new angular velocity. The large body of literature which is available 
to describe the spin-up phenomenon has substantiated the result that for 
homogeneous fluids (Greenspan & Howard 1963 ; Wedemeyer 1964 ; Weidmann 
1976a, b)  the spin-up time is of order &W1, where E is the Ekman number of the flow 
and d is the initial rotation rate of the fluid. For stratified fluids (Holton 1965a, b ;  
Pedlosky 1967; Walin 1969; Sakurai 1969; Buzyna & Veronis 1971; Hyun 1983), 
regions of the interior do not reach the new angular velocity until the diffusion time 
(O(E-ll2-l)) has elapsed, though a quasi-steady state of vertical shear in the interior 
azimuthal velocity is established in a time less than the homogeneous spin-up time. 

In the present study we consider the transient response of a contained rotating 
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linearly stratified fluid to a constant stress applied impulsively to its horizontal 
upper boundary. As in the previous cases cited above. the initial undisturbed 
dynamical state of the (cylindrical) fluid body is one of rapid solid-body rotation 
about a vertical axis. Howcver, here the forcing of the interior is initiated by the 
differential rotation, w ( 6  Q), from relative rest of the container's horizontal lid and 
not by an increase or decrease in the rotation rate of the system. 

Previous studies of the present problem have established (Pedlosky 1971 ; Linden 
1977) that the final state of motion in the fluid interior is a steady baroclinic 
azimuthal flow in which there is a linear vertical shear in the azimuthal velocity. The 
strength of the shear is determined essentially by the value of the ratio SIE;, where 
S is the Burger number of the flow (scc below). Since the value of the Ekman number, 
E ,  is generally much less than unity for the rapidly rotating flows in question, the 
viscous timescale (O(I3-l)) in which this final steady state of linear shear is achieved 
is much longer than the (O(E-i))  Ekman timescale. The principal objective of the 
present paper is to gain an understanding of the transient behaviour of the fluid 
within the latter, much shorter timescale. No previous experimental or theoretical 
investigations of this problem have been made. 

2. Formulation of the problem 
The flow configuration to be considered is illustrated schematically in figure 1. A 

cylinder of constant depth H and radius L contains an incompressible linearly 
stratified, fluid which rotates as a solid body with constant angular velocity IR about 
a vertical axis. At time t = 0 the horizontal rigid lid of the container is set into motion 
impulsively, and thereafter maintained with constant angular velocity w ,  relative to 
the rotating cylinder. 

Relative to the rotating frame, the momentum, continuity and energy equations 
governing the subsequent flow of such a fluid may be expressed in the standard form 

(2.1) 
Pt+V. (Pq)  = 0, (2.2) 

p t + ( q - V ) p  = Kv2p,  (2.3) 

qt + (4 .V)  q + f x  q = - p - l V p - g +  vvzq, 

where q = (u, v, w) is the velocity vector in a cylindrical polar coordinate system 
( r ,  8, z) ,  p is the density, p is the pressure, fî ( = 2Qt) is the Coriolis parameter and 
g = -gf is the gravitational acceleration. The kinematic viscosity and mass diffusion 
coefficient of the fluid are given by v and K respectively, with both coefficients being 
assumed to be constant ; the centrifugal acceleration has been neglected. 

Attention is restricted to cases in which changes in density are effected solely by 
varying concentrations of a dissolved solute, so (2.3) has been derived under the 
assumption that, in the absence of internal heat sources, thermal effects can be 
neglected. 

Exploiting the property that the total pressure and density fields are dominated 
by their vertical structure, the density field in the absence of relative motion may be 

(2.4) 
expressed as 

where pb is the density a t  the base of fluid, and 

' P  = Pb-Pt (2.5) 
represents the total vertical density difference between the top (t) and bottom (b) of 
the fluid. To ensure static stability the non-dimensional function p,(z) is negative and 
monotonic and takes values between 0 and - 1.  

P(Z)  = P b +  ( A P )  P,(ZL 
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FIQURE. 1.  Schematic representation of flow configuration. 

The static pressure is defined in a similar manner as 

P(Z) = Pb+P,(Z). (2.6) 

Equations (2.1)-(2.3) may now be arranged in an appropriate non-dimensional form 
by non-dimensionalizing all the variables with apposite scale factors, so as to reflect 
the principal force balance in the flow between the Coriolis and pressure gradient 
forces (see (2.7)-(2.11) below). 

In the following equations the non-dimensional variables are appended with an 
asterisk to distinguish them from their dimensional forms : 

(2.7) 

(2.8) 

(2.10) 

(2.11) 

In the equations above, H and L are representative vertical and horizontal scales (in 
this case the half-depth and radius respectively of the fluid container) and the 
timescale is that for homogeneous spin-up. The scale factor, 6, and the Rossby, 
Burger and Froude numbers, Ro, S and Fr are defined as 

( r ,  8, Z) = (Lr*, 8*, Hz*) ,  

(u, v, w) = wL(u*, v*, 6w*), 

p ( r ,  892, t )  = P,+P&) +pbfwL2p*(r*, 8*, 5*, t * ) ,  
p(r ,  8 , z , t )  = pb+Ap[Pz(z)+RoS-lp*(r*,  8*,z*, t * ) ] .  

t = ( H / ( v f ) i )  t*, (2.9) 

6 = H / L ,  (2.12) 

RO = o / f ,  (2.13) 

(2.14) 

Fr = Ro/S. (2.15) 
S = (gApH)/p,LZf2 = S2N2/f2, 

Attention is now confined to the following parameter ranges : 

E Q 1 ,  

s = 0(1), 

RO = KE;, K = 0(1), 

6 = H / L  = O ( l ) ,  
E$3'/cr = 0(1), 

A < Ei, 

( 2 . 1 6 ~ )  

(2.16b) 

( 2 . 1 6 ~ )  

(2.16d) 

(2.16e) 

(2.168 
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where A = Ap/po, and the Ekman number, E ,  and the Schmidt number v are given 
by E = v / f H 2  and CT = v/K respectively. These approximations result in the 
Boussinesq equations : 

E h t  +Ro[uu,+wu,-v2/r]-v = -p,+ S2E[V2u-u/r2], 

E b ,  + Ro[uv, + wvz + uv/r] + u = S2E[V2v - v / r 2 ] ,  

(2.17) 

(2.18) 

E~w~+Ro[uw,+ WW,] = -p,-p+S2E[V2w], (2.19) 

r-l(ru)r + w, = 0, (2.20) 

Eip,+R~[~p,+wp,]--Xw = ES2v-'(V2p), (2.21) 

where (2.22) 

is the three-dimensional Laplacian, and axial symmetry has been assumed. 
If it is assumed that the dynamics of the flow are dominated by Ekman pumping- 

suction, the dependent variables can be expanded in Ei in the standard manner 
(Pedlosky 1979) to give the following zeroth-order equations for (2.17)-(2.21) : 

00 = Par?  

uo = 0, 

Po = -Pow 

r-l(ru0), = - woz, 

wo = 0. 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

The first-order relations are given by 

- v1 -Kvt/r = pl,, (2.28) 

VOt +ul = 0, (2.29) 

P1 = -PlU 

r-l(ru1), = - wlzr 

Pot = -X% 

(2.30) 

(2.31) 

(2.32) 

where the absence of the diffusion term in (2.32) leads to (2.16e). (Note that in the 
above, asterisks have been dropped for convenience.) 

Eliminating u1 and w1 from (2.29), (2.31) and (2.32) we have an equation involving 
po and vo, which may then be written entirely in terms of pa,  from (2.23) and (2.25). 
The result is an equation whose first (simple) time integral gives the elliptic equation 
for Po, 

v:po+-- 1 a2Po - - 0, 
s a22 

(2.33) 

where V i  is the horizontal Laplacian (in our case here, simply given by 
r-l a/ar(ra/ar)).  Thus, the spin-up problem reduces to solving (2.33) subject to  
appropriate boundary conditions on z = 1 and z = - 1. 
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2.1. The boundary conditions 

In the Appendix, we show, following Pedlosky (1967), that for S = O( l),  the sidewall 
boundary layer on r = 1 can carry no net vertical flow of fluid, so that layer cannot 
accept an O(Ei) inflow at  its edge (in contrast to the homogeneous case!). Hence, u 
must be zero at  r = 1, and, from (2.23) and (2.29), there is the condition 

@ = o  on r = l  (2.34) 

on the azimuthal velocity component. It should be pointed out that the velocity no 
slip is not due to the inability of some boundary layer on r = 1 to take that slip 
velocity to zero ; it is rather that the Coriolis force-induced radial velocity connected 
to the time rate of change of vo must vanish at  r = 1 because of the strong constraints 
imposed by buoyancy near the wall. 

The spin-up discussed here takes place on a timescale long compared with the 
timescale for the unsteady development of the Ekman layers, so the Ekman-layer 
dynamics are quasi-steady. An important result from Ekman dynamics is that the 
radial flux of fluid in such a layer is given by 

- ( 1 / 4 2 )  Ei(uc + V G  -uB-vB)t (2.35) 

where the subscript G denotes components in the geostrophic flow a t  the edge of the 
Ekman layer, and the B subscript identifies velocities at the boundary. Hence, under 
(2 .24) ,  the volumetric flow rate into the upper corner is given by the product of the 

ar 

flux and the flow area, i.e. 
427cEi. (2.36) 

Now, in a homogeneous case, this fluid enters the Stewartson Ei layer, flows down, 
then radially outward into the fluid interior, pushing ahead of i t  spun-up fluid. As we 
have noted already, there is no shear layer in this rotating stratified fluid capable of 
accepting a fluid flow rate of this magnitude. Therefore, this fluid flows into the 
corner, and erupts into the interior as a source. Since the flow rate is O(Eh), that effect 
translates into a boundary condition on wl, i.e. 

w1 = - @ ( r -  1 )  4 2  on z = 1, ( 2 . 3 7 ~ )  

where @(x-x,) denotes the Dirac delta function with singularity at xo. Now, the 
Ekman velocity compatibility condition to be applied on the outer flow a t  the 
horizontal boundaries is given in our notation by 

w = & ( 1 / 4 2 ) E i ( c B - c )  on z = f l ,  (2.37 b )  

with the vorticity component 2 . V  x q denoted by 5. Substitution of the Ei expansion 
into this equation gives the compatible vertical velocities at the boundaries 

w1 = ( 1 / 4 2 )  (2 -V;p0)  ( 1 / 4 2 )  @ ( r -  1 )  on z = 1,  ( 2 . 3 8 ~ )  
w1 = ( 1 / 4 2 ) V i p o  on z = - 1 ,  (2.383) 

where we have appended to the boundary condition obtained from the Ekman 
conditions the requirement of mass conservation, ( 2 . 3 7 ~ ) .  Now, recall that w1 is 
given in terms of p ,  by (2.32). Substitution gives the boundary conditions for (2.33), 

( 2 . 3 9 ~ )  

(2.39 b )  
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So, the initial-value problem is posed as the solution of (2.33) with (2.35) and (2.39). 
We proceed now to the solution. 

2.2. The exact solution 

We seek solution to (2.33) and (2.39) in the form 

(2.40) 

where, to satisfy (2.34) on r = 1, {a,} are the zeros of the J1 Bessel function. 
Substitution of this solution into (2.32) leads to the equation for A,, 

1 a2A, 
A ,  = 0, s a22 

and the boundary conditions (2.38) become 

with 

(2.41) 

( 2 . 4 2 ~ )  

(2.42 b )  

J: [ @ ( r -  1)  - 21 rJo(a, r )  dr 
B , = -  ( 2 . 4 2 ~ )  , 

d2 5,' r[Jo(a, r)]'dr 

where B, may be evaluated, and gives simply - S a n r n / d 2  with r, the Fourier- 
Bessel J series expansion for r ,  so 

rn2/[an Jz(an)l .  (2.42d) 

Equation (2.41) may t,hen be solved under (2.42) by separation of variables or 
Laplace transformation. I n  any case, the solution for the swirl, vo, is given by 

(2.43) 

h, = ( m n / d 2 )  tanh (m,), j, = (mJd2)  coth (m,). (2.44a-c) 

Notice that, for time large, the exponentials in (2.43) vanish, and the solution 
approaches a solution of the steady equation. For extreme values of S ,  we can make 
the following approximations. 

S Q 1 : for S+O (meaning small effects of stratification), notice that m, + O  for all 
finite a,, so that h,+O(s), and j,+ 1 / 4 2 .  Hence, (2.43) may be summed 
approximately, and we have 

with the parameters in the solution given as 

m, = Stan, 

m 

vo - $( 1 - exp ( - t/z/2)) + O(S) + z C r ,  ( 1 - exp ( - a2, St/z/2)) J,(ol, r ) ,  S + 1. 
n-1 

(2.45) 

Of course, for an of order S-i or larger, m, = O(1) and so large-n terms in the series 
do not lead to  forms like those in (2.45) ; but, rn = O(S) for those cases, so they make 
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very small alterations to  the (2.45) result, and are accounted for by the ‘O(S)’  
notation. It is also clear from (2.45) that  S- t  0, t+ co are non-commutative. If 
t = O( l ) ,  then the entire second term is O(S),  indicating that on the spin-up timescale, 
the spin-up is just like the homogeneous case. However, for t = O(l/S) ,  each Fourier 
mode spins up with a linear shear in the vertical, and further, for St 9 1, the 
exponential is small and so (2.45) becomes 

v,+r( l+z) ,  t-tco. ( 2 . 4 6 ~ )  

It is worth noting that this 1/S timescale is immediately evident from (2.39) itself. 
There are great complexities in this small-S case not evident in what we have just 
done; further details may be found in the Appendix. What is clear from (2.33), and 
more opaque in (2.43) is that if S + 1, then the solution includes a thin Si layer inside 
r = 1. We examine that region by writing r = 1 +Si 6; then, the argument of the 
Bessel function in (2.43) becomes a,+m,t. Letting S go to zero in this expression 
recovers (2.45) evaluated a t  r = 1, unless we take rn, to  be O(1) for S+O. From 
( 2 . 4 4 ~ )  for that  to be so, a, must be large; hence, we see that the large-n terms in 
the series are important to the structure near the wall, as we would expect, since 
large-n Bessel functions have small-scale radial structure. Since m, is O ( l ) ,  then 
(2.43) and (2.443, c) indicate that, in fact, the structure in this layer is much more 
complex than the simple (2.45) solution, since h, andj,  are O(1) and, hence, there is 
significant z-structure as well. So, in small-S spin-up, the baroclinic effects are 
confined to  this Si layer. Thus, one restriction on (2.45) and ( 2 . 4 6 ~ )  is 

r - 1  9 s;. (2.46 b )  

It is now well understood that (2.45) fails on a diffusion timescale, so that ‘t+co ’ 
means in fact t large, but t + E-i. However, we show in the Appendix that the (2.43) 
solution fails for S small unless 

t + SIE;, (2.46 c) 

so, quite evidently, the solution given here makes no sense unless, S, though small, 
is large compared to  Ei. Therefore, the most severe restriction on ( 2 . 4 6 ~ )  is ( 2 . 4 6 ~ )  
and 

S % Ei, (2.46d) 

Further, the entire analysis given here is predicated on the fact that the ‘buoyancy 
layer’ on the r = 1 surface can accommodate no falling fluid, hence the corner 
singularity expressed in (2.384. As the Appendix shows, that buoyancy layer merges 
with a Stewartson ‘Q-layer’ if S is as small as (Ea2)f/,. Now, for S larger than this 
value but smaller than Ei, the outer layer changes structure slightly, but remains the 
layer which absorbs the corner flow, so we expect the overall structure to be not very 
different. However, below ( E 6 2 ) i / ~ ,  fluid flows down the wall, and the outer-layer 
structure changes significantly. 

Having noted that, however, it should be pointed out that  the core fluid always 
spins up in the same fashion - Ekman pumping in and out of the horizontal layers, 
and fluid fed into the interior by the layers on r = 1 .  So, whatever the complexities 
of the wall layers, the small-S core flow seems unaffected for t = O(1).  

For completeness, we note additionally that (2.33) is only the pro er interior 
differential equation for times of order 1/S if S is much larger than O ( E d 2 / u ;  for S 
values that are comparable to that value or smaller, density diffusion becomes 
important throughout the interior of the flow. In  general, the details of the small-S 
structure, as discussed further in the Appendix as well, are far too involved for 
treatment in this paper and await further work. 

P 
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FIGURE 2. For caption see facing page. 



Transient response of rotating fluid to impulsive forcing 

+ 1.0 

+ 0.4 

-0.1 

-0.7 

1 .O 

41 

+ 1.0 

",: 
0 1 2 3 

1 .o 
0.8 - + 1.0 

+ 0.4 

0.1 

0.7 
1 .o 

- 0  

0 2 4 6 8 10 
EiQt 

1 .o 
0.8 

0.6 
0 0  

Rw 0.4 

0.2 

L 

0 2 4 6 8 10 
EIQt 

+ 1.0 

+ 0.4 

-0.1 

- 0.7 

0 2 4 6 8 10 
E*Qt 

FIGURE 2. Plots of non-dimensional azimuthal velocity vo (non-diyensionelized with the lid 
velocity at mid-radius, E )  against time (non-dimensionalized by E-ZP'), for Ro = 1.38 x lo-*, 
E = 1.28 x 8 = 0.27 and z / H  = 1.0, 0.4, -0.1, -0.7 and - 1.0, as indicated on the curves (a) 
S = 0.001, ( b )  S = 0.01, (c) S = 0.05; ( d )  S = 0.29; (e) S = 0.5; (f) S = 0.005; (9) S = 0.01; (h)  
S = 0.03. 
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S 9 1 :  for S large, on the other hand. i t  is cvident from ( 2 . 4 4 ~ )  that all of the rn, 
are large, regardless of n ,  hence both h, and j, are asymptotic to ($S')ia,. The ratios 
of hyperbolic functions in (2 .43)  are approximated by exponentials, and hence, to 
leading order, (2 .43)  becomes 

vo - r l exp[~~~a l (z - i )1~ , ( a1 r ) (~ -exp[ -a , (~~ / ' / 2 ) t ] ) ,  s 9 1, (2.47) 

from which it is evident that the decay toward a steady state takes place on a 
timescale S-i rather than O( 1) or O(S-'), and further that the bulk of the fluid does 
not spin up - rather, the spinning fluid is all contained in a 'penetration depth' 
region of width S-i near the upper boundary, and in particular 

w o ~ r l e x p [ S ~ a , ( z - l ) ] J l ( a , r ) ,  t - tcc  and S large. (2.48) 

(There are an infinite number of terms like the rl term given in (2.47) and (2 .48) ;  
however, all other terms are order exp (-d) smaller than the first, and hence play 
a transcendentally small role in the large-S solution.) 

Finally, it is in order to notice, from the general solution (2 .43)  for arbitrary S,  that 
v,+Ofort+cc onz = -1, and that w,+rfort+oo on z = +1, so that the fluidin the 
neighbourhoods of each of those boundaries moves with the speed of the boundaries. 
The distribution of that azimuthal speed with height, then, varies from linear 
variation for S small, to  exponential variation near z = 1 for S large. 

3. Numerical results 
The series (2 .42)  was evaluated numerically to give values of the azimuthal 

velocity w,, and its variation with time at  mid-radius ( r  = R )  and various depths in 
the flow. Some of the results of the computations are shown in figure 2.  In  all graphs 
the ordinates and abscissae have been normalized by the tangential lid velocity a t  
mid-radius and the Ekman timescale respectively. 

3.1. Variation of flow behaviour with S 

At the smallest value of S (see figure 2a)  the flow behaviour resembles closely that 
of a homogeneous ( S  = 0) fluid, with the azimuthal velocity wo exhibiting height- 
independence and an asymptotic increase with time to a value half that  of the lid. 
The Taylor-Proudman two-dimensionality constraint shown in figure 2 a is not 
broken until values of S close to S = 0.01 are attained (see figure 2 b ) ,  and, even for 
this value of S, the tendency of the fluid to behave in a manner resembling that of 
a homogeneous fluid remains strong in the early stages of the response. In  particular, 
there is a well-defined initial barotropic response. The flow does not display 
baroclinic behaviour (i.e. a splitting into individual responses for each level) until 
approximately one Ekman period has elapsed after the initiation of lid motion. At 
and around the value of S = 0.01, the description of the spin-up process ceases to 
have the accepted significance, as the interior velocity field is subject to large 
variation with height on timescales long in comparison to the Ekman E' 2 s p' in-up 
timescale. 

Figure 2 ( c )  demonstrates that stratification has become the dominating influence 
a t  S = 0.05. As z /H + 1 the flow velocity increases relatively slowly and mono- 
tonically to approach the lid velocity at large times, while fluid at mid-depth spins 
up (i.e. approaches to within l /e  of its asymptotic velocity) the most rapidly, with 
the initial barotropic response aiding this behaviour. Overshoot in velocity is clearly 
evident in the lower levels of the fluid, with the excess angular velocity here being 
removed over approximately four Eft spin-up times. 
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FIGURE 3. Dimensionless plot showing variation with height z’( =&+If)) of azimuthal velocity at 
mid-radius R,  8 min (8.17 0 - I  advection time units) after initiation of impulsive surface forcing. 
Values of Ro, E ,  S as for figure 2. For reference theoretical homogeneous (S = 0) profile 
(v,/& = 0.5) also indicated. 

V , / R W  

As S increases successively in value (see figure 2a+) the Taylor-Proudman 
constraint of two-dimensional flow is broken more rapidly and the length of time 
over which the barotropic adjustment operates is shortened. Consequently, as S 
increases, fluid in the lower levels does not gain achieve such large initial velocities, 
and the overshoot phenomenon becomes progressively less evident. Inhibition of the 
spin-up dynamics a t  large depth continues with increasing values of S (as revealed by 
inspection of figures 2d, e) and for values of S = 0.29 and above, the initial response 
is seen also to be baroclinic. Indeed, for the value S = 0.5 (see figure 2e) buoyancy 
effects so inhibit the vertical Ekman pumping that fluid at large depths is not 
affected significantly by lid motion. In accordance with the findings of Walin (1969) 
and Sakurai (1969), and consistent with our results in (2.47), the spin-up process is 
confined to the region in the vicinity of the lid a t  large values of S, and the 
adjustment is more rapid than that in the analogous homogeneous spin-up process 
- compare, for example, figures 2 (a)  and 2 (e). 

It is possible to examine the long-term behaviour of low-S-value flows (see figure 
2f-h) if i t  is presumed that the vorticity equation (2.32) remains valid for times in 
excess of ten Ekman E-i spin-up periods. For the case S = 0.001 (not shown) the flow 
retains the homogeneous character shown by figure 2(b), for times in excess of ten 
Ekman spin-up periods, but as the value of S increases from 0.005 through 0.01 to 
0.03, the overshoot in the lower part of the fluid becomes progressively less marked. 
In  consequence, the interior velocity of the fluid near the bottom of the container is 
reduced to  zero more rapidly than for low-S cases by the action of the Ekman layer 
activated on the lower solid boundary soon after the lid motion commences. It is of 
interest to  note that the dynamics of the weakly stratified rotating flows are 
extremely sensitive to the values of S under consideration. This general behaviour 
has been observed in other contexts (Davies, 1972; Davies, Davis & Foster 1990) 
where the presence of slight stratification has been shown to be sufficient to change 
the flow structure dramatically from that occurring with the homogeneous case. I n  
the present configuration, the phenomenon is well illustrated by figure 3 where a 
comparison of flow profiles is made for various values of S, including S = 0. Note, in 
particular, the dramatic difference between the homogeneous (S = 0) and stratified 
cases, and the relatively modest changes which occur a t  higher values of S (8 > 0.1). 
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It would be noted that the predictions of theory a t  very low S values must be treated 
with caution since the S = O( 1) scaling relation ( 2 . 1 6 ~ )  employed in the derivation of 
the governing equation is strictly invalid for these cases. However, the recovery of 
a stable homogeneous solution at values of S 5 0.001 does indicate that the S = 0(1 )  
restriction is weak and may therefore be relaxed. 

4. Comparison with laboratory experiments 
In order to investigate further the transient effects described above, a number of 

laboratory experiments were conducted in the same parameter range as the 
theoretical model. The linearly stratified fluid was contained in a circular Plexiglas 
cylinder of total depth 30cm and radius 30 cm, mounted on a variable-speed 
rotating turntable. A rigid horizontal, Plexiglas lid, supported on dry bearings on a 
central cylindrical column of radius 4 cm, could be rotated differentially with respect 
to the rest of the container by means of a separate variable-speed motor. A false base, 
made from Plexiglas, was supported on four sectional pillars, the lengths of which 
could be varied to allow the working depth to be increased or decreased. The fluid 
was stratified with salt and fresh water, using the Oster double-reservoir technique, 
and the initial density profile within the container was measured with a miniature 
conductivity probe mounted on a vertical traverse support. A gap of approximately 
5 mm was left between the rim of the lid and the inner surface of the cylinder wall. 
The flow at various depths in the fluid was visualized by releasing dye electrolytically 
(Honji, Taneda & Tatsuno 1980; Boyer & Davies 1982) from an array of thin wires 
stretched horizontally across the fluid, and illuminating individual levels with a thin 
slice of light from a projector mounted on the rotating table. The positions of the dye 
lines were recorded photographically, and the angular displacements of the lines in 
a given interval were measured to give values of the azimuthal velocity v,,(z, t )  at any 
radial location. 

As indicated above, the flow in the configuration under consideration is 
baroclinically unstable when, for constant El S and HIL, the Rossby number exceeds 
a critical value (Linden 1977 ; Spence 1986). The present spin-up study was restricted 
to flows which were stable. In  general, for such flows, the radial dependence of the 
azimuthal velocity was observed to be linear up to and beyond mid-radius : however, 
during, and for some time subsequent to the completion of, the spin-up process, dye 
lines at different heights within the fluid displayed markedly disparate behaviour at 
larger radii. At these locations, dye lines in the lower levels of the fluid were retarded 
with respect to a linear radial velocity profile, whilst those lines at  greater elevations 
showed acceleration. 

For nearly all of the experiments conducted, the effect of the impulsive lid start 
could be observed to varying degrees at all depths (see below). Exceptions to this rule 
occurred in a number of experiments which were conducted in a tank of large depth 
containing a strongly stratified fluid. In these cases, with low values of w and Q, it 
was observed that the spin-up dynamics did not extend from the lid throughout the 
entire depth of the container. In  this respect, the observations were in qualitative 
agreement with the notion of a penetration depth (Walin 1969) of S-i H ,  also evident 
in (2.47), below which the spin-up dynamics do not operate. 

For low values of S (S < 0.01) the initial response of the fluid was observed to be 
barotropic, as indicated by dye lines at  all heights moving off together with the same 
azimuthal velocity. Flows with S values in excess of 0.05 also displayed an initial 
barotropic response, but for a period determined by the degree of stratification. At  
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FIGURE 4. Comparison of theoretical (- ) and experimental (-----) variation of v,/Rw with 
time (non-dimensionalized aa in figure 2) for (a) S = 0.06, z / H  = 0.06 and -0.64; and (a) S = 0.14, 
z/H = 0.18 and -0.71 (experimental errors are less than the resolution of the graph and have 
therefore been omitted). Other parameters as for figure 2. 

higher values of S the period of the baroclinic response was weakly dependent upon 
the value of S. In particular, the appearance of relative separation between dye lines 
at  different heights, which indicated the entry of baroclinic modes into the velocity 
field, occurred more rapidly with increasing S. However, for lower values of the 
Burger number (S < 0.01) the barotropic response was protracted and its duration 
was strongly dependent upon the numerical value of S. As a result of this barotropic 
response for small and moderate values of S, there existed an excess of angular 
velocity in the lower levels of the fluid and a deficit in the upper levels soon after the 
initiation of the lid motion. Over a period of several ( O ( E 4 ) )  spin-up times these 
excess and deficit velocities were removed by a temporarily activated lower Ekman 
layer, and a permanent upper Ekman layer respectively, to leave an azimuthal 
velocity field which varied with height. The results of two sets of experiments with 
S = 0.06 and 0.14 are shown in figures 4(a) and 4b respectively. In each figure, a 
comparison is shown with the corresponding analytical solution for the same 
parameter values. In  both figures the presence of an overshoot in velocity in the 
deeper regions of the fluid is clearly seen. 

For the case of S = 0.06, results are presented for the azimuthal velocities a t  
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dimensionless heights z = +0.06 and -0.64, and it can be seen that at the latter 
level, for both theory and experiment, the peak of the overshoot occurs after 
approximately 0.75 Ekman spin-up times, although the theory underestimates the 
strength of the overshoot. This quantitative lack of accord between theoretical 
prediction and observation was common to all cases examined. At the greater height 
of z = +0.06 the agreement between experiment and theory is closer, and within 
experimental error after about one Ekman period. However, the velocity is 
consistently underestimated in the initial interval. The quantitative correlation 
between theory and experiment improves with increasing height for all cases 
examined and the long-term value of the azimuthal velocity is predicted to  within 
experimental error a t  higher levels. Discrepancies between prediction and obser- 
vation are more pronounced for the case S=O.14, though there are fewer data 
points available for comparison. Quantitative agreement is fair for this case, with 
overshoot a t  lower levels clearly evident in the experimental data set. 

The evidence of the theoretical and experimental results above indicates that the 
transient response of the fluid to impulsive surface forcing occurs in three stages, as 
with the homogeneous and stratified spin-up cases studied previously. (For the 
configuration under investigation in the present study, the dimensional timescales of 
importance are 1.6 s 

The spin-up process is initiated a t  a time t = 0, when the lid is set impulsively into 
motion, rotating differentially a t  a pre-determined speed relative to the other solid 
surfaces of the container. Rayleigh shear layers develop immediately on horizontal 
surfaces, becoming quasi-steady Ekman layers within approximately one revolution 
(Greenspan 1968). Fluid within the Ekman layer adjacent to  the lid flows radially 
outwards, with continuity requiring that replacement fluid be drawn in from the 
inviscid interior. During this phase the fluid responds in the same way as in the 
familiar spin-up process for the case where the rotation rate of the whole container 
is increased. 

The action of the Ekman layers is strong following the impulsive start of 
differential rotation, when the vorticity of the interior fluid adjacent to the upper 
Ekman layer differs greatly from that of the fluid immediately adjacent to the lid. 
During and subsequent to this period, fluid is drawn upwards into the upper Ekman 
layer : in the process, such fluid acquires increased angular velocity, and returns to 
the interior from the erupting Ekman layer in the upper corner of the flow domain. 

In  the inviscid interior, fluid which is drawn in from large radius to replace that 
drawn up to  the upper Ekman layer, acquires increased angular velocity through 
conservation of angular momentum, in a similar manner to the homogeneous spin- 
up process (Greenspan 1968). During the initial barotropic response for small-S cases, 
fluid a t  large depths acquires greater angular velocity than that corresponding to  the 
steady profile remaining a t  the conclusion of the spin-up process. I n  consequence, 
that part of the flow passing adjacent to  the lower boundary causes an Ekman layer 
to form on the solid surface. This layer then acts to  remove theexcess velocity in the 
lower levels of the fluid. 

Fluid moving radially outward within the upper Ekman layer reaches the vicinity 
of the corner region (the region of overlap between the Ekman and vertical boundary 
layers), where, owing to the insulating nature of the container, the sidewall boundary 
layers are unable to accept the flux from the Ekman layer (see Pedlosky 1967, and 
the Appendix). Consequently, an intense jet leaves the Ekman layer a t  this point 
(Walin 1969) and upper interior fluid in the vicinity of the sidewalls receives a 
concentrated flux of high angular velocity fluid (see figure 5 ) .  

145 s (E-k?-l)  and 12800 s (E-lQ-l)) .  



Transient response of rotating Jluid to impulsive forcing 47 

I" 

_ _ _ _ _ _ _ _ _ _ _ _ _  J 

FIGURE 5. Schematic representation of the meridional circulation within the fluid 
following the onset of differential rotation, w .  

If lower-level fluid were to move radially inwards, and increase the angular 
velocity of the inner regions by conservation of angular momentum, it could only be 
replaced with fluid from either the lower Ekman layer or the vertical sidewall 
boundary layers. However, the lower Ekman layer cannot be activated until the 
relative vorticity of the region adjacent to it differs from that of the boundary. 
Moreover, when activated, it pumps fluid upwards so as to reduce the low-level 
angular velocity. In addition, the motion of deep fluid from the sidewall is prohibited 
owing to the insulating nature of the vertical boundaries (Pedlosky 1967 ; Sakurai 
1969). In consequence, a region of stagnant fluid is formed at  high-radius locations 
in the deepest regions of the container. In contrast to the above, upper-level fluid a t  
mid-radius is replaced by fluid descending from greater height and large radius, in 
the manner shown in figure 5. 

It may be noted in passing that Buzyna & Veronis (1971) have explained the 
disparate appearance of dye lines at  large radius in terms of radial diffusion of 
momentum from the sidewalls (although this is not applicable to the present 
arrangement, where the velocity of the sidewalls remains constant throughout the 
experiment). Buzyna & Veronis corrected Walin's inviscid interior solutions near 
r = 1, by the a posteriori addition of a complementary error function. However, this 
is not a function of the vertical coordinate and is therefore incapable, alone, of 
describing differences in near-wall behaviour at  various heights. Reference to 
Buzyna & Veronis' data shows that although excellent accord is found between their 
experiment and Walin's theory with radial diffusion added, the original theory itself 
predicts regions of accelerated and decelerated flow. It seems, therefore, that the 
phenomenon cannot be attributed entirely to radial diffusive effects. 

Conclusion of the spin-up process occurs as the interior fluid adjacent to the 
horizontal boundaries acquires the vorticity of the container, and the vertical 
velocities driven by the Ekman layers decay asymptotically to zero. Subsequent 
alterations to the interior velocity profile are effected by the direct action of viscous 
forces on the much longer dimensional timescale of t  = E-lSZ-'. 
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Appendix 
The analysis in this paper assumes that the azimuthal fluid velocity component w 

does not slip over the peripheral boundary r = 1, whereas in the homogeneous case, 
the core flow slips over the surface. The reason for the difference is explained in the 
boundary-layer analysis below, and discussed more intuitively at the end of this 
section. The analysis of Pedlosky (1967) is relevant to this point, and will not be 
repeated here in its entirety ; as he points out, on r = 1 there is an Ei layer, analogous 
to  the Ekman Layer - a ‘buoyancy layer ’ - whose equations are easily put into the 
form 

and the boundary-layer coordinate E is defined by 6 = ( r -  1)/(2ES2(aS)i)i. 
egrating this equation across the layer, then taking the real part gives 

Int- 

which makes the point that, if the density obeys a no-flux condition at  the vertical 
boundary, r = 1, then the Ei layer can carry no vertical flux. Hence, all of the Ekman 
fluid flowing into the corner at  r = 1, z = 1 must erupt into the interior; it cannot 
flow down the wall in the buoyancy layer. Thus, the condition given as ( 2 . 4 3 ~ )  is 
correct for this insulating condition. For salt-stratified fluid as in the experiments, 
this requires that the salt be not deposited on the wall. Thus, there can be no radial 
inflow into the layer, and hence u1 = vo = 0 at r = 1. 

If, on the other hand, the wall density, denoted by pw is somehow specified, then 
the solution for x is 

from which it is clear that the vertical volumetric flow rate is 

(A 3) p +i(as)tw = p E  + (pw -pE) e(’+’)<, 

ro I 

and fluid may indeed flow down the wall at r = 1. Utilizing the continuity equation, 
and matching to u1 in the interior solutions, we have the boundary condition 

Now, the complete solution for the case when S = 0 ( 1 )  and a = O(1) is a complex 
question. The Ekman flux into the corner (r = 1, z = 1) is as noted already, but it is 
clear from (A 4) that there is vertical flux into the same corner (and into the corner 
a t  (1, - 1)) that is also non-zero, depending on the value of 8po/az at ( 1 , l )  and (1, - 1). 
In addition, from (A 5 ) ,  radial flux is also present all along the vertical extent of the 
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outer wall. Detailed spin-up results for this case will be presented in a subsequent 
paper. However, here, if BS %- 1, then (A 5 )  is approximated by $p/ar = 0 on r = 1, 
the same as for the no-flux condition. 

In summary, then, we conclude that the theoretical results presented in this paper 
are correct if either of the following conditions hold: 

applar=O at r = 1 or Sc%- 1. (A 6) 

ap,Jar = 0 on r = 1. (A 7) 

and either one leads to the boundary condition on the outer flow, 

Another way of understanding this result is to suppose that vo did not vanish at  r = 1. 
Then, from (2.29), u1 is non-zero there, so there is a volumetric inflow of order Ei into 
the sidewall boundary layers. In  the homogeneous case, that fluid flows into the Ei 
layer and ultimately into the & layer ; here, however, since the layer is of width Ei, 
continuity demands that w be of order one. However, we have seen that the 
buoyancy-layer structure precludes such a velocity that carries any net mass. Hence, 
u1 = 0 and hence vo = 0 on r = 1 is the only possibility. 

The S 4 1 boundary layers 
For S = O( l ) ,  the swirling fluid adheres to the outer surface, with a boundary layer 
- the buoyancy layer - on the vertical velocity. As S gets small, the ‘core’ solution 
splits into a central region which is essentially like the homogeneous case (see 2.45)) 
so long as t = 0 ( 1 ) ,  and a sidewall layer of width Si - as noted in $2 of the text. Now, 
examination of the exact solution or asymptotic analysis for small S shows that the 
fluid injected into the ‘interior ’ from the Ekman-layer eruption at  ( 1 , l )  comes into 
this Si layer. In this region, that fluid flows partly into Ekman layers and partly back 
into the interior, providing an inflow for the u1 interior motion - just as in the 
homogeneous case. Further, also as in the homogeneous case, the swirl velocity, v, 
slips along the edge of this sidewall layer, so that to the core flow, there is azimuthal 
velocity slip at its ‘wall’. The difference, of course, is that the slip occurs across the 
L!$ layer here, and across the Ei layer in the homogeneous case. This picture of the 
flow fails at some small value of S to be discussed below, and various other structures 
become important at the wall. Never, however, does the overall S < 1 flow picture 
significantly change on this timescale insofar as the core motion is concerned. 

If we examine the equations of motion near r = 1 in a layer thicker than the 
buoyancy layer, we find that the most general boundary-layer equation seems to be 

Notice that, for t = 0(1 ) ,  scaling the r variable with Si leads to the same equation 
that results from the same scaling on (2.33), but only if S %- SE:; for smaller values 
of S ,  a different limit equation results from (A 8).  Further, even with such an Si 
scaling of the radial coordinate, we notice that scaling t with S/Ei results in the full 
equation. Now, the radial diffusion of angular momentum and radial diffusion of 
density, represented by the final terms in (A 7) are not included in the derivation of 
$2;  therefore, as noted there, the ‘long-time’ solution given in ( 2 . 4 6 ~ )  fails a t  this 
timescale. 

So, for S smaller than E:, the appropriate limit equation of (A 8) for times of order 
unity is just a diffusion equation, in a layer of width (&‘Ei/(r)i, so long as B 4 (Ei/S)f .  
(For B much larger than such a value, the width is in act (E&!3$). 
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At still smaller values of S ,  the more interior buoyancy layer is still more involved. 
Though it is the subject of another paper, i t  is relevant to  say here that (A 1)  is 
replaced by the sixth-order system below, once S is as small as (Ed2):/g, 

where 7 = ( r -  1)  (EP);. It is beyond the scope of this paper to explore the detailed 
solutions of this equation, its matching to outer layers and the core flow ; we simply 
note here the critical value of (small) S for which such a structure arises. 
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